On Extending the Quasilinearization Method to Higher Order Convergent Hybrid Schemes Using the Spectral Homotopy Analysis Method
نویسندگان
چکیده
We propose a sequence of highly accurate higher order convergent iterative schemes by embedding the quasilinearization algorithm within a spectral collocation method. The iterative schemes are simple to use and significantly reduce the time and number of iterations required to find solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. The accuracy and convergence properties of the proposed algorithms are tested numerically by solving three Falkner-Skan type boundary layer flow problems and comparing the results to the most accurate results currently available in the literature. We show, for instance, that precision of up to 29 significant figures can be attained with no more than 5 iterations of each algorithm.
منابع مشابه
Numerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملSpectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface
This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...
متن کاملA Note on the Convergence of the Homotopy Analysis Method for Nonlinear Age-Structured Population Models
In this paper, a theorem is proved which presents the series solution obtained from the homotopy analysis method is convergent to the exact solution of nonlinear age-structured population models.
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملOn the convergence of the homotopy analysis method to solve the system of partial differential equations
One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013